Alternatives to CloudBees logo

Alternatives to CloudBees

Jenkins, CircleCI, Bamboo, Azure DevOps, and GitLab are the most popular alternatives and competitors to CloudBees.
94
163
+ 1
6

What is CloudBees and what are its top alternatives?

CloudBees is a leading provider of continuous delivery software for developers to rapidly build, test, and deploy software. Key features include support for various programming languages, integration with popular version control systems, and automation of the software delivery process. However, some limitations of CloudBees include high pricing for enterprise features, limited customization options, and potential performance issues for large-scale projects.

  1. Jenkins: Jenkins is an open-source automation server that helps to automate the parts of software development related to building, testing, and delivering or deploying software. Key features include a large plugin ecosystem, distributed build architecture, and support for various platforms. Compared to CloudBees, Jenkins is free to use but may require more setup and maintenance.
  2. CircleCI: CircleCI is a continuous integration and delivery platform that automates the software development process. Key features include integration with popular version control systems, scalable infrastructure, and customizable workflows. Compared to CloudBees, CircleCI offers a more streamlined user experience but may have limitations in handling complex projects.
  3. GitLab CI/CD: GitLab CI/CD is a part of GitLab's integrated software development platform that provides continuous integration and continuous delivery capabilities. Key features include a single application for the entire DevOps lifecycle, built-in version control, and container registry. Compared to CloudBees, GitLab CI/CD offers a comprehensive platform but may lack some advanced enterprise features.
  4. Travis CI: Travis CI is a continuous integration platform that helps automate the testing and deployment of software projects. Key features include support for various programming languages, flexible build configuration, and seamless integration with GitHub. Compared to CloudBees, Travis CI is easy to set up and use but may have limitations in scalability and customization options.
  5. Codeship: Codeship is a continuous integration and delivery platform that helps to automate the software development workflow. Key features include customizable workflows, parallel testing, and deployment pipelines. Compared to CloudBees, Codeship offers a user-friendly interface but may lack some advanced enterprise features.
  6. Bamboo: Bamboo is a continuous integration and deployment tool from Atlassian that helps automate the release management process. Key features include easy integration with JIRA and Bitbucket, customizable build plans, and deployment environments. Compared to CloudBees, Bamboo offers seamless integration with other Atlassian products but may have limitations in supporting diverse platforms.
  7. TeamCity: TeamCity is a continuous integration and deployment server from JetBrains that helps automate the software build and deployment process. Key features include comprehensive build chain support, integration with popular IDEs, and customizable build triggers. Compared to CloudBees, TeamCity offers seamless integration with JetBrains IDEs but may require more configuration for complex projects.
  8. Azure DevOps: Azure DevOps is a set of development tools from Microsoft that provides integrated solutions for continuous integration, delivery, and deployment. Key features include integration with Azure services, collaborative development tools, and customizable pipelines. Compared to CloudBees, Azure DevOps offers tight integration with Microsoft technologies but may have limitations in supporting non-Microsoft platforms.
  9. GitHub Actions: GitHub Actions is a continuous integration and delivery service built into GitHub that helps automate the software development workflow. Key features include integration with GitHub repositories, customizable workflows using YAML, and support for container-based builds. Compared to CloudBees, GitHub Actions offers seamless integration with GitHub repositories but may have limitations in advanced enterprise features.
  10. GoCD: GoCD is an open-source continuous delivery server that helps automate and streamline the software delivery process. Key features include advanced build workflow visualization, secure deployments, and plugins for extensibility. Compared to CloudBees, GoCD is free to use but may require more technical expertise to set up and maintain.

Top Alternatives to CloudBees

  • Jenkins
    Jenkins

    In a nutshell Jenkins CI is the leading open-source continuous integration server. Built with Java, it provides over 300 plugins to support building and testing virtually any project. ...

  • CircleCI
    CircleCI

    Continuous integration and delivery platform helps software teams rapidly release code with confidence by automating the build, test, and deploy process. Offers a modern software development platform that lets teams ramp. ...

  • Bamboo
    Bamboo

    Focus on coding and count on Bamboo as your CI and build server! Create multi-stage build plans, set up triggers to start builds upon commits, and assign agents to your critical builds and deployments. ...

  • Azure DevOps
    Azure DevOps

    Azure DevOps provides unlimited private Git hosting, cloud build for continuous integration, agile planning, and release management for continuous delivery to the cloud and on-premises. Includes broad IDE support. ...

  • GitLab
    GitLab

    GitLab offers git repository management, code reviews, issue tracking, activity feeds and wikis. Enterprises install GitLab on-premise and connect it with LDAP and Active Directory servers for secure authentication and authorization. A single GitLab server can handle more than 25,000 users but it is also possible to create a high availability setup with multiple active servers. ...

  • Spinnaker
    Spinnaker

    Created at Netflix, it has been battle-tested in production by hundreds of teams over millions of deployments. It combines a powerful and flexible pipeline management system with integrations to the major cloud providers. ...

  • JavaScript
    JavaScript

    JavaScript is most known as the scripting language for Web pages, but used in many non-browser environments as well such as node.js or Apache CouchDB. It is a prototype-based, multi-paradigm scripting language that is dynamic,and supports object-oriented, imperative, and functional programming styles. ...

  • Git
    Git

    Git is a free and open source distributed version control system designed to handle everything from small to very large projects with speed and efficiency. ...

CloudBees alternatives & related posts

Jenkins logo

Jenkins

57.7K
49.3K
2.2K
An extendable open source continuous integration server
57.7K
49.3K
+ 1
2.2K
PROS OF JENKINS
  • 523
    Hosted internally
  • 469
    Free open source
  • 318
    Great to build, deploy or launch anything async
  • 243
    Tons of integrations
  • 211
    Rich set of plugins with good documentation
  • 111
    Has support for build pipelines
  • 68
    Easy setup
  • 66
    It is open-source
  • 53
    Workflow plugin
  • 13
    Configuration as code
  • 12
    Very powerful tool
  • 11
    Many Plugins
  • 10
    Continuous Integration
  • 10
    Great flexibility
  • 9
    Git and Maven integration is better
  • 8
    100% free and open source
  • 7
    Slack Integration (plugin)
  • 7
    Github integration
  • 6
    Self-hosted GitLab Integration (plugin)
  • 6
    Easy customisation
  • 5
    Pipeline API
  • 5
    Docker support
  • 4
    Fast builds
  • 4
    Hosted Externally
  • 4
    Excellent docker integration
  • 4
    Platform idnependency
  • 3
    AWS Integration
  • 3
    JOBDSL
  • 3
    It's Everywhere
  • 3
    Customizable
  • 3
    Can be run as a Docker container
  • 3
    It`w worked
  • 2
    Loose Coupling
  • 2
    NodeJS Support
  • 2
    Build PR Branch Only
  • 2
    Easily extendable with seamless integration
  • 2
    PHP Support
  • 2
    Ruby/Rails Support
  • 2
    Universal controller
CONS OF JENKINS
  • 13
    Workarounds needed for basic requirements
  • 10
    Groovy with cumbersome syntax
  • 8
    Plugins compatibility issues
  • 7
    Lack of support
  • 7
    Limited abilities with declarative pipelines
  • 5
    No YAML syntax
  • 4
    Too tied to plugins versions

related Jenkins posts

Tymoteusz Paul
Devops guy at X20X Development LTD · | 23 upvotes · 8.6M views

Often enough I have to explain my way of going about setting up a CI/CD pipeline with multiple deployment platforms. Since I am a bit tired of yapping the same every single time, I've decided to write it up and share with the world this way, and send people to read it instead ;). I will explain it on "live-example" of how the Rome got built, basing that current methodology exists only of readme.md and wishes of good luck (as it usually is ;)).

It always starts with an app, whatever it may be and reading the readmes available while Vagrant and VirtualBox is installing and updating. Following that is the first hurdle to go over - convert all the instruction/scripts into Ansible playbook(s), and only stopping when doing a clear vagrant up or vagrant reload we will have a fully working environment. As our Vagrant environment is now functional, it's time to break it! This is the moment to look for how things can be done better (too rigid/too lose versioning? Sloppy environment setup?) and replace them with the right way to do stuff, one that won't bite us in the backside. This is the point, and the best opportunity, to upcycle the existing way of doing dev environment to produce a proper, production-grade product.

I should probably digress here for a moment and explain why. I firmly believe that the way you deploy production is the same way you should deploy develop, shy of few debugging-friendly setting. This way you avoid the discrepancy between how production work vs how development works, which almost always causes major pains in the back of the neck, and with use of proper tools should mean no more work for the developers. That's why we start with Vagrant as developer boxes should be as easy as vagrant up, but the meat of our product lies in Ansible which will do meat of the work and can be applied to almost anything: AWS, bare metal, docker, LXC, in open net, behind vpn - you name it.

We must also give proper consideration to monitoring and logging hoovering at this point. My generic answer here is to grab Elasticsearch, Kibana, and Logstash. While for different use cases there may be better solutions, this one is well battle-tested, performs reasonably and is very easy to scale both vertically (within some limits) and horizontally. Logstash rules are easy to write and are well supported in maintenance through Ansible, which as I've mentioned earlier, are at the very core of things, and creating triggers/reports and alerts based on Elastic and Kibana is generally a breeze, including some quite complex aggregations.

If we are happy with the state of the Ansible it's time to move on and put all those roles and playbooks to work. Namely, we need something to manage our CI/CD pipelines. For me, the choice is obvious: TeamCity. It's modern, robust and unlike most of the light-weight alternatives, it's transparent. What I mean by that is that it doesn't tell you how to do things, doesn't limit your ways to deploy, or test, or package for that matter. Instead, it provides a developer-friendly and rich playground for your pipelines. You can do most the same with Jenkins, but it has a quite dated look and feel to it, while also missing some key functionality that must be brought in via plugins (like quality REST API which comes built-in with TeamCity). It also comes with all the common-handy plugins like Slack or Apache Maven integration.

The exact flow between CI and CD varies too greatly from one application to another to describe, so I will outline a few rules that guide me in it: 1. Make build steps as small as possible. This way when something breaks, we know exactly where, without needing to dig and root around. 2. All security credentials besides development environment must be sources from individual Vault instances. Keys to those containers should exist only on the CI/CD box and accessible by a few people (the less the better). This is pretty self-explanatory, as anything besides dev may contain sensitive data and, at times, be public-facing. Because of that appropriate security must be present. TeamCity shines in this department with excellent secrets-management. 3. Every part of the build chain shall consume and produce artifacts. If it creates nothing, it likely shouldn't be its own build. This way if any issue shows up with any environment or version, all developer has to do it is grab appropriate artifacts to reproduce the issue locally. 4. Deployment builds should be directly tied to specific Git branches/tags. This enables much easier tracking of what caused an issue, including automated identifying and tagging the author (nothing like automated regression testing!).

Speaking of deployments, I generally try to keep it simple but also with a close eye on the wallet. Because of that, I am more than happy with AWS or another cloud provider, but also constantly peeking at the loads and do we get the value of what we are paying for. Often enough the pattern of use is not constantly erratic, but rather has a firm baseline which could be migrated away from the cloud and into bare metal boxes. That is another part where this approach strongly triumphs over the common Docker and CircleCI setup, where you are very much tied in to use cloud providers and getting out is expensive. Here to embrace bare-metal hosting all you need is a help of some container-based self-hosting software, my personal preference is with Proxmox and LXC. Following that all you must write are ansible scripts to manage hardware of Proxmox, similar way as you do for Amazon EC2 (ansible supports both greatly) and you are good to go. One does not exclude another, quite the opposite, as they can live in great synergy and cut your costs dramatically (the heavier your base load, the bigger the savings) while providing production-grade resiliency.

See more
Thierry Schellenbach

Releasing new versions of our services is done by Travis CI. Travis first runs our test suite. Once it passes, it publishes a new release binary to GitHub.

Common tasks such as installing dependencies for the Go project, or building a binary are automated using plain old Makefiles. (We know, crazy old school, right?) Our binaries are compressed using UPX.

Travis has come a long way over the past years. I used to prefer Jenkins in some cases since it was easier to debug broken builds. With the addition of the aptly named “debug build” button, Travis is now the clear winner. It’s easy to use and free for open source, with no need to maintain anything.

#ContinuousIntegration #CodeCollaborationVersionControl

See more
CircleCI logo

CircleCI

12.7K
7K
974
Automate your development process quickly, safely, and at scale
12.7K
7K
+ 1
974
PROS OF CIRCLECI
  • 226
    Github integration
  • 177
    Easy setup
  • 153
    Fast builds
  • 94
    Competitively priced
  • 74
    Slack integration
  • 55
    Docker support
  • 45
    Awesome UI
  • 33
    Great customer support
  • 18
    Ios support
  • 14
    Hipchat integration
  • 13
    SSH debug access
  • 11
    Free for Open Source
  • 6
    Mobile support
  • 5
    Nodejs support
  • 5
    Bitbucket integration
  • 5
    YAML configuration
  • 4
    AWS CodeDeploy integration
  • 3
    Free for Github private repo
  • 3
    Great support
  • 2
    Clojurescript
  • 2
    Continuous Deployment
  • 2
    Parallelism
  • 2
    Clojure
  • 2
    OSX support
  • 2
    Simple, clean UI
  • 1
    Unstable
  • 1
    Ci
  • 1
    Favorite
  • 1
    Helpful documentation
  • 1
    Autoscaling
  • 1
    Extremely configurable
  • 1
    Works
  • 1
    Android support
  • 1
    Fair pricing
  • 1
    All inclusive testing
  • 1
    Japanese in rspec comment appears OK
  • 1
    Build PR Branch Only
  • 1
    So circular
  • 1
    Easy setup, easy to understand, fast and reliable
  • 1
    Parallel builds for slow test suites
  • 1
    Easy setup. 2.0 is fast!
  • 1
    Easy to deploy to private servers
  • 1
    Really easy to use
  • 0
    Stable
CONS OF CIRCLECI
  • 12
    Unstable
  • 6
    Scammy pricing structure
  • 0
    Aggressive Github permissions

related CircleCI posts

Russel Werner
Lead Engineer at StackShare · | 32 upvotes · 2.5M views

StackShare Feed is built entirely with React, Glamorous, and Apollo. One of our objectives with the public launch of the Feed was to enable a Server-side rendered (SSR) experience for our organic search traffic. When you visit the StackShare Feed, and you aren't logged in, you are delivered the Trending feed experience. We use an in-house Node.js rendering microservice to generate this HTML. This microservice needs to run and serve requests independent of our Rails web app. Up until recently, we had a mono-repo with our Rails and React code living happily together and all served from the same web process. In order to deploy our SSR app into a Heroku environment, we needed to split out our front-end application into a separate repo in GitHub. The driving factor in this decision was mostly due to limitations imposed by Heroku specifically with how processes can't communicate with each other. A new SSR app was created in Heroku and linked directly to the frontend repo so it stays in-sync with changes.

Related to this, we need a way to "deploy" our frontend changes to various server environments without building & releasing the entire Ruby application. We built a hybrid Amazon S3 Amazon CloudFront solution to host our Webpack bundles. A new CircleCI script builds the bundles and uploads them to S3. The final step in our rollout is to update some keys in Redis so our Rails app knows which bundles to serve. The result of these efforts were significant. Our frontend team now moves independently of our backend team, our build & release process takes only a few minutes, we are now using an edge CDN to serve JS assets, and we have pre-rendered React pages!

#StackDecisionsLaunch #SSR #Microservices #FrontEndRepoSplit

See more
Simon Reymann
Senior Fullstack Developer at QUANTUSflow Software GmbH · | 30 upvotes · 9.6M views

Our whole DevOps stack consists of the following tools:

  • GitHub (incl. GitHub Pages/Markdown for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
  • Respectively Git as revision control system
  • SourceTree as Git GUI
  • Visual Studio Code as IDE
  • CircleCI for continuous integration (automatize development process)
  • Prettier / TSLint / ESLint as code linter
  • SonarQube as quality gate
  • Docker as container management (incl. Docker Compose for multi-container application management)
  • VirtualBox for operating system simulation tests
  • Kubernetes as cluster management for docker containers
  • Heroku for deploying in test environments
  • nginx as web server (preferably used as facade server in production environment)
  • SSLMate (using OpenSSL) for certificate management
  • Amazon EC2 (incl. Amazon S3) for deploying in stage (production-like) and production environments
  • PostgreSQL as preferred database system
  • Redis as preferred in-memory database/store (great for caching)

The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:

  • Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
  • Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
  • Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
  • Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
  • Scalability: All-in-one framework for distributed systems.
  • Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.
See more
Bamboo logo

Bamboo

508
548
17
Tie automated builds, tests, and releases together in a single workflow
508
548
+ 1
17
PROS OF BAMBOO
  • 10
    Integrates with other Atlassian tools
  • 4
    Great notification scheme
  • 2
    Great UI
  • 1
    Has Deployment Projects
CONS OF BAMBOO
  • 6
    Expensive
  • 1
    Low community support
  • 1
    Bad UI
  • 1
    Bad integration with docker

related Bamboo posts

We were using a hosted version of Redmine to track defects and user stories originally. We migrated to Jira.

Jira was an easy decision for a number of reasons:

  • It's much more "Scrum ready" straight out of the box
  • It's so much easier to keep a track of progress (I love the reporting)
  • It natively encourages you to adhere to Scrum/Agile/Kanban practices
  • Atlassian has a fantastic DevOps ecosystem when considering the likes of Confluence and Bamboo etc
  • So many integrations!
  • Its UI is so intuitive which makes it an absolute pleasure to use!

I know there are alot of other tools in this space but not even considering anything else at the moment. Love Jira!

See more
xie zhifeng
Shared insights
on
BambooBambooJenkinsJenkinsGitLabGitLab
at

I am choosing a DevOps toolset for my team. GitLab is open source and quite cloud-native. Jenkins has a very popular environment system but old-style technicals. Bamboo is very nice but integrated only with Atlassian products.

See more
Azure DevOps logo

Azure DevOps

2.7K
2.8K
248
Services for teams to share code, track work, and ship software
2.7K
2.8K
+ 1
248
PROS OF AZURE DEVOPS
  • 56
    Complete and powerful
  • 32
    Huge extension ecosystem
  • 27
    Azure integration
  • 26
    Flexible and powerful
  • 26
    One Stop Shop For Build server, Project Mgt, CDCI
  • 15
    Everything I need. Simple and intuitive UI
  • 13
    Support Open Source
  • 8
    Integrations
  • 7
    GitHub Integration
  • 6
    One 4 all
  • 6
    Cost free for Stakeholders
  • 6
    Project Mgmt Features
  • 5
    Crap
  • 5
    Runs in the cloud
  • 3
    Agent On-Premise(Linux - Windows)
  • 2
    Aws integration
  • 2
    Link Test Cases to Stories
  • 2
    Jenkins Integration
  • 1
    GCP Integration
CONS OF AZURE DEVOPS
  • 8
    Still dependant on C# for agents
  • 5
    Many in devops disregard MS altogether
  • 4
    Capacity across cross functional teams not visibile
  • 4
    Not a requirements management tool
  • 4
    Half Baked
  • 3
    Jack of all trades, master of none
  • 3
    Poor Jenkins integration
  • 2
    Tedious for test plan/case creation

related Azure DevOps posts

Farzad Jalali
Senior Software Architect at BerryWorld · | 8 upvotes · 252.5K views

Visual Studio Azure DevOps Azure Functions Azure Websites #Azure #AzureKeyVault #AzureAD #AzureApps

#Azure Cloud Since Amazon is potentially our competitor then we need a different cloud vendor, also our programmers are microsoft oriented so the choose were obviously #Azure for us.

Azure DevOps Because we need to be able to develop a neww pipeline into Azure environment ina few minutes.

Azure Kubernetes Service We already in #Azure , also need to use K8s , so let's use AKS as it's a manged Kubernetes in the #Azure

See more
Andrey Kurdyumov
Sr. Software developer · | 8 upvotes · 25.8K views
Shared insights
on
Azure DevOpsAzure DevOpsGitGit

I use Azure DevOps because for me it gradually walk me from private Git repositories to simplest free option for CI/CD pipelines at the time. I spend 0$ initially to manager CI/CD for my small private projects. No need to go into two different places to setup integration, once I have git repository, I could deploy projects. Right now this is not the case since CI/CD is default for me, so I use it now from memories of old good days. I'm not yet need complexity on the projects, so I don't even consider other options with "more choices". I carefully limit my set of options during development, that's why Azure DevOps (VSTS)

See more
GitLab logo

GitLab

60.8K
52.1K
2.5K
Open source self-hosted Git management software
60.8K
52.1K
+ 1
2.5K
PROS OF GITLAB
  • 508
    Self hosted
  • 430
    Free
  • 339
    Has community edition
  • 242
    Easy setup
  • 240
    Familiar interface
  • 137
    Includes many features, including ci
  • 113
    Nice UI
  • 84
    Good integration with gitlabci
  • 57
    Simple setup
  • 34
    Has an official mobile app
  • 34
    Free private repository
  • 31
    Continuous Integration
  • 22
    Open source, great ui (like github)
  • 18
    Slack Integration
  • 15
    Full CI flow
  • 11
    Free and unlimited private git repos
  • 10
    User, group, and project access management is simple
  • 9
    All in one (Git, CI, Agile..)
  • 8
    Built-in CI
  • 8
    Intuitive UI
  • 6
    Full DevOps suite with Git
  • 6
    Both public and private Repositories
  • 5
    So easy to use
  • 5
    CI
  • 5
    Integrated Docker Registry
  • 5
    It's powerful source code management tool
  • 5
    Build/pipeline definition alongside code
  • 4
    Issue system
  • 4
    Dockerized
  • 4
    Unlimited free repos & collaborators
  • 4
    Security and Stable
  • 4
    On-premises
  • 4
    It's fully integrated
  • 4
    Mattermost Chat client
  • 4
    Excellent
  • 3
    Great for team collaboration
  • 3
    Built-in Docker Registry
  • 3
    Low maintenance cost due omnibus-deployment
  • 3
    I like the its runners and executors feature
  • 3
    Free private repos
  • 3
    Because is the best remote host for git repositories
  • 3
    Not Microsoft Owned
  • 3
    Opensource
  • 2
    Groups of groups
  • 2
    Powerful software planning and maintaining tools
  • 2
    Review Apps feature
  • 2
    Kubernetes integration with GitLab CI
  • 2
    It includes everything I need, all packaged with docker
  • 2
    Multilingual interface
  • 2
    HipChat intergration
  • 2
    Powerful Continuous Integration System
  • 2
    One-click install through DigitalOcean
  • 2
    The dashboard with deployed environments
  • 2
    Native CI
  • 2
    Many private repo
  • 2
    Kubernetes Integration
  • 2
    Published IP list for whitelisting (gl-infra#434)
  • 2
    Wounderful
  • 2
    Beautiful
  • 1
    Supports Radius/Ldap & Browser Code Edits
CONS OF GITLAB
  • 28
    Slow ui performance
  • 8
    Introduce breaking bugs every release
  • 6
    Insecure (no published IP list for whitelisting)
  • 2
    Built-in Docker Registry
  • 1
    Review Apps feature

related GitLab posts

Tim Abbott
Shared insights
on
GitHubGitHubGitLabGitLab
at

I have mixed feelings on GitHub as a product and our use of it for the Zulip open source project. On the one hand, I do feel that being on GitHub helps people discover Zulip, because we have enough stars (etc.) that we rank highly among projects on the platform. and there is a definite benefit for lowering barriers to contribution (which is important to us) that GitHub has such a dominant position in terms of what everyone has accounts with.

But even ignoring how one might feel about their new corporate owner (MicroSoft), in a lot of ways GitHub is a bad product for open source projects. Years after the "Dear GitHub" letter, there are still basic gaps in its issue tracker:

  • You can't give someone permission to label/categorize issues without full write access to a project (including ability to merge things to master, post releases, etc.).
  • You can't let anyone with a GitHub account self-assign issues to themselves.
  • Many more similar issues.

It's embarrassing, because I've talked to GitHub product managers at various open source events about these things for 3 years, and they always agree the thing is important, but then nothing ever improves in the Issues product. Maybe the new management at MicroSoft will fix their product management situation, but if not, I imagine we'll eventually do the migration to GitLab.

We have a custom bot project, http://github.com/zulip/zulipbot, to deal with some of these issues where possible, and every other large project we talk to does the same thing, more or less.

See more
Joshua Dean Küpper
CEO at Scrayos UG (haftungsbeschränkt) · | 20 upvotes · 698.6K views

We use GitLab CI because of the great native integration as a part of the GitLab framework and the linting-capabilities it offers. The visualization of complex pipelines and the embedding within the project overview made Gitlab CI even more convenient. We use it for all projects, all deployments and as a part of GitLab Pages.

While we initially used the Shell-executor, we quickly switched to the Docker-executor and use it exclusively now.

We formerly used Jenkins but preferred to handle everything within GitLab . Aside from the unification of our infrastructure another motivation was the "configuration-in-file"-approach, that Gitlab CI offered, while Jenkins support of this concept was very limited and users had to resort to using the webinterface. Since the file is included within the repository, it is also version controlled, which was a huge plus for us.

See more
Spinnaker logo

Spinnaker

227
356
14
Multi-cloud continuous delivery platform for releasing software changes with high velocity and confidence
227
356
+ 1
14
PROS OF SPINNAKER
  • 14
    Mature
CONS OF SPINNAKER
  • 3
    No GitOps
  • 1
    Configuration time
  • 1
    Management overhead
  • 1
    Ease of use

related Spinnaker posts

John Kodumal

LaunchDarkly is almost a five year old company, and our methodology for deploying was state of the art... for 2014. We recently undertook a project to modernize the way we #deploy our software, moving from Ansible-based deploy scripts that executed on our local machines, to using Spinnaker (along with Terraform and Packer) as the basis of our deployment system. We've been using Armory's enterprise Spinnaker offering to make this project a reality.

See more
JavaScript logo

JavaScript

351.7K
267.8K
8.1K
Lightweight, interpreted, object-oriented language with first-class functions
351.7K
267.8K
+ 1
8.1K
PROS OF JAVASCRIPT
  • 1.7K
    Can be used on frontend/backend
  • 1.5K
    It's everywhere
  • 1.2K
    Lots of great frameworks
  • 897
    Fast
  • 745
    Light weight
  • 425
    Flexible
  • 392
    You can't get a device today that doesn't run js
  • 286
    Non-blocking i/o
  • 237
    Ubiquitousness
  • 191
    Expressive
  • 55
    Extended functionality to web pages
  • 49
    Relatively easy language
  • 46
    Executed on the client side
  • 30
    Relatively fast to the end user
  • 25
    Pure Javascript
  • 21
    Functional programming
  • 15
    Async
  • 13
    Full-stack
  • 12
    Setup is easy
  • 12
    Future Language of The Web
  • 12
    Its everywhere
  • 11
    Because I love functions
  • 11
    JavaScript is the New PHP
  • 10
    Like it or not, JS is part of the web standard
  • 9
    Expansive community
  • 9
    Everyone use it
  • 9
    Can be used in backend, frontend and DB
  • 9
    Easy
  • 8
    Most Popular Language in the World
  • 8
    Powerful
  • 8
    Can be used both as frontend and backend as well
  • 8
    For the good parts
  • 8
    No need to use PHP
  • 8
    Easy to hire developers
  • 7
    Agile, packages simple to use
  • 7
    Love-hate relationship
  • 7
    Photoshop has 3 JS runtimes built in
  • 7
    Evolution of C
  • 7
    It's fun
  • 7
    Hard not to use
  • 7
    Versitile
  • 7
    Its fun and fast
  • 7
    Nice
  • 7
    Popularized Class-Less Architecture & Lambdas
  • 7
    Supports lambdas and closures
  • 6
    It let's me use Babel & Typescript
  • 6
    Can be used on frontend/backend/Mobile/create PRO Ui
  • 6
    1.6K Can be used on frontend/backend
  • 6
    Client side JS uses the visitors CPU to save Server Res
  • 6
    Easy to make something
  • 5
    Clojurescript
  • 5
    Promise relationship
  • 5
    Stockholm Syndrome
  • 5
    Function expressions are useful for callbacks
  • 5
    Scope manipulation
  • 5
    Everywhere
  • 5
    Client processing
  • 5
    What to add
  • 4
    Because it is so simple and lightweight
  • 4
    Only Programming language on browser
  • 1
    Test
  • 1
    Hard to learn
  • 1
    Test2
  • 1
    Not the best
  • 1
    Easy to understand
  • 1
    Subskill #4
  • 1
    Easy to learn
  • 0
    Hard 彤
CONS OF JAVASCRIPT
  • 22
    A constant moving target, too much churn
  • 20
    Horribly inconsistent
  • 15
    Javascript is the New PHP
  • 9
    No ability to monitor memory utilitization
  • 8
    Shows Zero output in case of ANY error
  • 7
    Thinks strange results are better than errors
  • 6
    Can be ugly
  • 3
    No GitHub
  • 2
    Slow

related JavaScript posts

Zach Holman

Oof. I have truly hated JavaScript for a long time. Like, for over twenty years now. Like, since the Clinton administration. It's always been a nightmare to deal with all of the aspects of that silly language.

But wowza, things have changed. Tooling is just way, way better. I'm primarily web-oriented, and using React and Apollo together the past few years really opened my eyes to building rich apps. And I deeply apologize for using the phrase rich apps; I don't think I've ever said such Enterprisey words before.

But yeah, things are different now. I still love Rails, and still use it for a lot of apps I build. But it's that silly rich apps phrase that's the problem. Users have way more comprehensive expectations than they did even five years ago, and the JS community does a good job at building tools and tech that tackle the problems of making heavy, complicated UI and frontend work.

Obviously there's a lot of things happening here, so just saying "JavaScript isn't terrible" might encompass a huge amount of libraries and frameworks. But if you're like me, yeah, give things another shot- I'm somehow not hating on JavaScript anymore and... gulp... I kinda love it.

See more
Conor Myhrvold
Tech Brand Mgr, Office of CTO at Uber · | 44 upvotes · 10.8M views

How Uber developed the open source, end-to-end distributed tracing Jaeger , now a CNCF project:

Distributed tracing is quickly becoming a must-have component in the tools that organizations use to monitor their complex, microservice-based architectures. At Uber, our open source distributed tracing system Jaeger saw large-scale internal adoption throughout 2016, integrated into hundreds of microservices and now recording thousands of traces every second.

Here is the story of how we got here, from investigating off-the-shelf solutions like Zipkin, to why we switched from pull to push architecture, and how distributed tracing will continue to evolve:

https://eng.uber.com/distributed-tracing/

(GitHub Pages : https://www.jaegertracing.io/, GitHub: https://github.com/jaegertracing/jaeger)

Bindings/Operator: Python Java Node.js Go C++ Kubernetes JavaScript OpenShift C# Apache Spark

See more
Git logo

Git

290.6K
174.6K
6.6K
Fast, scalable, distributed revision control system
290.6K
174.6K
+ 1
6.6K
PROS OF GIT
  • 1.4K
    Distributed version control system
  • 1.1K
    Efficient branching and merging
  • 959
    Fast
  • 845
    Open source
  • 726
    Better than svn
  • 368
    Great command-line application
  • 306
    Simple
  • 291
    Free
  • 232
    Easy to use
  • 222
    Does not require server
  • 27
    Distributed
  • 22
    Small & Fast
  • 18
    Feature based workflow
  • 15
    Staging Area
  • 13
    Most wide-spread VSC
  • 11
    Role-based codelines
  • 11
    Disposable Experimentation
  • 7
    Frictionless Context Switching
  • 6
    Data Assurance
  • 5
    Efficient
  • 4
    Just awesome
  • 3
    Github integration
  • 3
    Easy branching and merging
  • 2
    Compatible
  • 2
    Flexible
  • 2
    Possible to lose history and commits
  • 1
    Rebase supported natively; reflog; access to plumbing
  • 1
    Light
  • 1
    Team Integration
  • 1
    Fast, scalable, distributed revision control system
  • 1
    Easy
  • 1
    Flexible, easy, Safe, and fast
  • 1
    CLI is great, but the GUI tools are awesome
  • 1
    It's what you do
  • 0
    Phinx
CONS OF GIT
  • 16
    Hard to learn
  • 11
    Inconsistent command line interface
  • 9
    Easy to lose uncommitted work
  • 7
    Worst documentation ever possibly made
  • 5
    Awful merge handling
  • 3
    Unexistent preventive security flows
  • 3
    Rebase hell
  • 2
    When --force is disabled, cannot rebase
  • 2
    Ironically even die-hard supporters screw up badly
  • 1
    Doesn't scale for big data

related Git posts

Simon Reymann
Senior Fullstack Developer at QUANTUSflow Software GmbH · | 30 upvotes · 9.6M views

Our whole DevOps stack consists of the following tools:

  • GitHub (incl. GitHub Pages/Markdown for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
  • Respectively Git as revision control system
  • SourceTree as Git GUI
  • Visual Studio Code as IDE
  • CircleCI for continuous integration (automatize development process)
  • Prettier / TSLint / ESLint as code linter
  • SonarQube as quality gate
  • Docker as container management (incl. Docker Compose for multi-container application management)
  • VirtualBox for operating system simulation tests
  • Kubernetes as cluster management for docker containers
  • Heroku for deploying in test environments
  • nginx as web server (preferably used as facade server in production environment)
  • SSLMate (using OpenSSL) for certificate management
  • Amazon EC2 (incl. Amazon S3) for deploying in stage (production-like) and production environments
  • PostgreSQL as preferred database system
  • Redis as preferred in-memory database/store (great for caching)

The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:

  • Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
  • Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
  • Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
  • Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
  • Scalability: All-in-one framework for distributed systems.
  • Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.
See more
Tymoteusz Paul
Devops guy at X20X Development LTD · | 23 upvotes · 8.6M views

Often enough I have to explain my way of going about setting up a CI/CD pipeline with multiple deployment platforms. Since I am a bit tired of yapping the same every single time, I've decided to write it up and share with the world this way, and send people to read it instead ;). I will explain it on "live-example" of how the Rome got built, basing that current methodology exists only of readme.md and wishes of good luck (as it usually is ;)).

It always starts with an app, whatever it may be and reading the readmes available while Vagrant and VirtualBox is installing and updating. Following that is the first hurdle to go over - convert all the instruction/scripts into Ansible playbook(s), and only stopping when doing a clear vagrant up or vagrant reload we will have a fully working environment. As our Vagrant environment is now functional, it's time to break it! This is the moment to look for how things can be done better (too rigid/too lose versioning? Sloppy environment setup?) and replace them with the right way to do stuff, one that won't bite us in the backside. This is the point, and the best opportunity, to upcycle the existing way of doing dev environment to produce a proper, production-grade product.

I should probably digress here for a moment and explain why. I firmly believe that the way you deploy production is the same way you should deploy develop, shy of few debugging-friendly setting. This way you avoid the discrepancy between how production work vs how development works, which almost always causes major pains in the back of the neck, and with use of proper tools should mean no more work for the developers. That's why we start with Vagrant as developer boxes should be as easy as vagrant up, but the meat of our product lies in Ansible which will do meat of the work and can be applied to almost anything: AWS, bare metal, docker, LXC, in open net, behind vpn - you name it.

We must also give proper consideration to monitoring and logging hoovering at this point. My generic answer here is to grab Elasticsearch, Kibana, and Logstash. While for different use cases there may be better solutions, this one is well battle-tested, performs reasonably and is very easy to scale both vertically (within some limits) and horizontally. Logstash rules are easy to write and are well supported in maintenance through Ansible, which as I've mentioned earlier, are at the very core of things, and creating triggers/reports and alerts based on Elastic and Kibana is generally a breeze, including some quite complex aggregations.

If we are happy with the state of the Ansible it's time to move on and put all those roles and playbooks to work. Namely, we need something to manage our CI/CD pipelines. For me, the choice is obvious: TeamCity. It's modern, robust and unlike most of the light-weight alternatives, it's transparent. What I mean by that is that it doesn't tell you how to do things, doesn't limit your ways to deploy, or test, or package for that matter. Instead, it provides a developer-friendly and rich playground for your pipelines. You can do most the same with Jenkins, but it has a quite dated look and feel to it, while also missing some key functionality that must be brought in via plugins (like quality REST API which comes built-in with TeamCity). It also comes with all the common-handy plugins like Slack or Apache Maven integration.

The exact flow between CI and CD varies too greatly from one application to another to describe, so I will outline a few rules that guide me in it: 1. Make build steps as small as possible. This way when something breaks, we know exactly where, without needing to dig and root around. 2. All security credentials besides development environment must be sources from individual Vault instances. Keys to those containers should exist only on the CI/CD box and accessible by a few people (the less the better). This is pretty self-explanatory, as anything besides dev may contain sensitive data and, at times, be public-facing. Because of that appropriate security must be present. TeamCity shines in this department with excellent secrets-management. 3. Every part of the build chain shall consume and produce artifacts. If it creates nothing, it likely shouldn't be its own build. This way if any issue shows up with any environment or version, all developer has to do it is grab appropriate artifacts to reproduce the issue locally. 4. Deployment builds should be directly tied to specific Git branches/tags. This enables much easier tracking of what caused an issue, including automated identifying and tagging the author (nothing like automated regression testing!).

Speaking of deployments, I generally try to keep it simple but also with a close eye on the wallet. Because of that, I am more than happy with AWS or another cloud provider, but also constantly peeking at the loads and do we get the value of what we are paying for. Often enough the pattern of use is not constantly erratic, but rather has a firm baseline which could be migrated away from the cloud and into bare metal boxes. That is another part where this approach strongly triumphs over the common Docker and CircleCI setup, where you are very much tied in to use cloud providers and getting out is expensive. Here to embrace bare-metal hosting all you need is a help of some container-based self-hosting software, my personal preference is with Proxmox and LXC. Following that all you must write are ansible scripts to manage hardware of Proxmox, similar way as you do for Amazon EC2 (ansible supports both greatly) and you are good to go. One does not exclude another, quite the opposite, as they can live in great synergy and cut your costs dramatically (the heavier your base load, the bigger the savings) while providing production-grade resiliency.

See more